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Lemma 1 (xA and xB as functions of σ). 

(a) From (8) xA(σ) + xB(σ) = (sA + sB)/φ(sA, sB), where φ(sA, sB) ≡ sA/[1 + σ-1/(1-α)]α + 

sB/[1 + σ1/(1-α)]α from (5b).  Using σ ≡ sA/sB > 0 from (5a), some algebra shows that 

xA(σ) + xB(σ) > 1 iff the following expression is positive: 

   σ[(2 + σ-1/(1-α) + σ1/(1-α))α - (1 + σ1/(1-α))α]  

   + (2 + σ-1/(1-α) + σ1/(1-α))α - (1 + σ-1/(1-α))α  

 This is true because each line is strictly positive. 

(b) From (8) we have xA(σ) ≡ sA/φ(sA, sB).  From (4) and (5c) this can be rewritten as  

 xA(σ) = sA / max {sALA
α + sBLB

α subject to LA ≥ 0, LB ≥ 0, LA + LB = 1} or 

 xA(σ) = 1 / max {LA
α + (1/σ)LB

α subject to LA ≥ 0, LB ≥ 0, LA + LB = 1} 

 The right hand side is increasing in σ due to the envelope theorem.  Thus xAʹ(σ) > 

0 for all σ > 0.  A similar argument shows that xBʹ(σ) < 0 for all σ > 0. 

(c) Write xA(σ) = 1 / max {LA
α + (1/σ)LB

α subject to LA ≥ 0, LB ≥ 0, LA + LB = 1} as 

in (b).  Because multiplication of the objective function by the constant (1/sA) has 

no effect on the solution, the optimal LA and LB in the denominator are given by 

(5d) for n = 1.  Making this substitution, it can be shown that the denominator of 
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xA(σ) approaches infinity as σ → 0 and approaches 1 as σ → ∞.  This gives xA(0) 

= 0 and xA(∞) = 1. 

(d) The proof parallels (c). 

 
Proposition 1 (war and peace). 

 Attack is a dominant strategy for A iff pAh(nA) > sAnA
α-1 or equivalently nA/N > 

xA(σ).  Attack is a dominant strategy for B iff pBh(nB) > sBnB
α-1 or equivalently nB/N > 

xB(σ).  When neither inequality holds, there is peace as in (7).  If both A and B attack, 

then nA/N + nB/N > xA(σ) + xB(σ) > 1 where the second inequality is obtained from (9a).  

This is impossible because nA + nB = N.  Thus A and B cannot both attack.  The results in 

(a), (b), and (c) follow from the first three sentences above. 

 To show that equality of marginal products implies peace, fix N > 0 and σ > 0.  

Write LA* = N/[1 + σ-1/(1-α)] and LB* = N/[1 + σ1/(1-α)] as in (5d), where LA* + LB* = N.  

This is the unique labor allocation that equates marginal products across sites, and it is 

also the unique allocation that equates average products across sites.  Let the total food 

output from (LA*, LB*) be 

  Y* = sA(LA*) 
α + sB(LB*)α  

        = H(N) = max {sALA
α + sBLB

α subject to LA ≥ 0, LB ≥ 0, LA + LB = N}. 

Because the average products are equal, we have Y*/N = sA(LA*)α-1 = sB(LB*)α-1.  Peace is 

strictly better than war for group A when Y*/N = sA(LA*)α-1 > (LA*/N)h(LA*) = H(LA*)/N.  

This holds because LA* < N gives H(LA*) < H(N) = Y*.  The proof is similar for B.  This 

shows that peace is strictly better for each group, so case (b) holds with strict inequalities.  

 
Proposition 2 (interior locational equilibria). 
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 For any given allocation n there are three possibilities: (a) B attacks; (b) there is 

peace; or (c) A attacks.  Using Proposition 1, we consider each case in turn. 

(a) B attacks iff nA/N < 1-xB or equivalently nA/nB < (1-xB)/xB.  The utility functions 

are those from the warfare case in (10).  The inequalities in (11) yield η1/α ≤ nA/nB 

≤ (1/η)1/α.  Together this gives Proposition 2(a). 

(b) There is peace iff 1-xB ≤ nA/N ≤ xA or equivalently (1-xB)/xB ≤ nA/nB ≤ xA/(1-xA).  

The utility functions are those from the peace case in (10).  The inequalities in 

(11) yield (ση)1/(1-α) ≤ nA/nB ≤ (σ/η)1/(1-α).  Together this gives Proposition 2(b).  

(c) A attacks iff xA < nA/N or equivalently xA/(1-xA) < nA/nB.  The utility functions are 

those from the warfare case in (10).  The inequalities in (11) yield η1/α ≤ nA/nB ≤ 

(1/η)1/α.  Together this gives Proposition 2(c). 

 
Proposition 3 (migration). 

(a) Follows from Definition 1, the construction of LEB, LEP, and LEA in Proposition 

2, and Definition 2(a). 

(b) Suppose LEB is empty and consider two possibilities:  

 (i)  mA/mB < (1-xB)/xB, which yields war; and  

 (ii)  (1-xB)/xB ≤ mA/mB with mA/mB below LEP, which yields peace.   

 In case (i), the utility functions for war in (10) give uA(n) = [φ(sA, sB)/N]nA
α and 

uB(n) = [φ(sA, sB)/N]nB
α for all n with nA ≤ mA.  The fact that LEB is empty implies 

(1-xB)/xB ≤ η1/α so we have nA/nB < η1/α for all such n.  This gives uA(n) < ηuB(n) in 

(11) for all such n.  From Definition 2(c) we obtain the final allocation n = (0, N). 
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 In case (ii), the utility functions for peace in (10) give uA(n) = sAnA
α-1 and uB(n) = 

sBnB
α-1 for all n with nA ≥ mA and nA/nB below LEP.  From the construction of LEP, 

this implies ηuA(n) > uB(n) for all such n.  The allocation n with the smallest nA ≥ 

mA such that ηuA(n) = uB(n) is the one where nA/nB equals the lower bound of LEP. 

(c) Suppose LEB is non-empty and consider two possibilities: 

 (i) mA/mB is below the lower bound of LEB, which yields war;   

(ii) mA/mB is between the upper bound of LEB and the lower bound of LEP, 

which may yield either war or peace. 

 In case (i), the argument is the same is in (b)(i) above, except that now nA/nB < η1/α 

follows from the fact that all allocations under consideration have nA/nB below the 

lower bound of LEB.   

 In case (ii), suppose (1/η)1/α < mA/mB < (1-xB)/xB, which yields war.  The utility 

functions for war in (10) give uA(n) = [φ(sA, sB)/N]nA
α and uB(n) = [φ(sA, sB)/N]nB

α 

for all n with nA ≥ mA and nA/nB < (1-xB)/xB.  From (1/η)1/α < mA/mB ≤ nA/nB, at any 

such n we have uB(n) < ηuA(n).  This includes the allocation m.  From Definition 

2(b), no such n can be a final allocation.  Now consider n with nA/nB ≥ (1-xB)/xB 

where nA/nB is below the lower bound of LEP.  Any such n yields peace.  At nA/nB 

= (1-xB)/xB the function uB(n) is continuous while uA(n) has an upward jump.  This 

maintains uB(n) < ηuA(n).  From the construction of LEP, the allocation n with the 

smallest nA ≥ mA such that uB(n) = ηuA(n) is the one where nA/nB equals the lower 

bound of LEP.  If instead the initial allocation has mA/mB ≥ (1-xB)/xB and mA/mB is 

below the lower bound of LEP, we repeat the last part of the argument above.      

(d) The argument is symmetric to case (b) above. 
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(e) The argument is symmetric to case (c) above. 

 
Lemma 2 (group size ratio). 

Fix σt ∈ (0, ∞) and mA
t/mB

t ∈ (0, ∞).  We proceed in the following steps. 

(a) Recall the definitions of xA(σ) and xB(σ) in (8).  From Proposition 2, the pair (σt, 

mA
t/mB

t) determines whether mA
t/mB

t is in one of the sets LEB, LEP, or LEA.  If it 

is, then from Definition 2(a) we have nA
t/nB

t = mA
t/mB

t.   

(b) If mA
t/mB

t is not in one of the sets LEB, LEP, or LEA, this and the fact that mt is 

interior implies that one of the four cases (b)-(e) in Proposition 3 applies.  From 

Proposition 2, σt determines whether LEB is empty or non-empty and likewise for 

LEA.   The ratios (σt, mA
t/mB

t) together determine which of (b)-(e) in Proposition 3 

applies, and also the final allocation nt, where nt must be (Nt, 0), (0, Nt), the lower 

bound of LEP, or the upper bound of LEP.  

(c) If step (a) applies with mA
t/mB

t ∈ LEP, or step (b) applies and nt is the lower or 

upper bound of LEP, there is peace in period t.  This follows because all ratios in 

the LEP interval satisfy the conditions for peace in Proposition 1 by construction.  

We then obtain mA
t+1/mB

t+1 from (12), where the new allocation mt+1 is interior. 

(d) If step (a) applies with mA
t/mB

t ∈ LEB or mA
t/mB

t ∈ LEA, there is a non-trivial war 

in period t and we obtain mA
t+1/mB

t+1 from (13), where mt+1 is interior.  If step (b) 

applies and nt is (Nt, 0) or (0, Nt), there is a trivial war in period t, and again we 

obtain mA
t+1/mB

t+1 from (13), where mt+1 is interior.   

   
Proposition 4 (war and peace with Malthusian dynamics). 



 6 

From Proposition 3, a non-trivial war occurs in period t+1 iff mA
t/mB

t ∈ LEB or mA
t/mB

t ∈ 

LEA.  In all other cases, either nt+1 = (Nt+1, 0) or nt+1 = (0, Nt+1) so there is a trivial war; or 

nA
t+1/nB

t+1 ∈ LEP so there is peace. 

(a) Proposition 2(a) shows that a necessary condition for mA
t+1/mB

t+1 ∈ LEB is η1/α ≤ 

mA
t+1/mB

t+1 ≤ (1/η)1/α.  Proposition 2(c) shows that the same condition is necessary 

for mA
t+1/mB

t+1 ∈ LEA. 

(b) Proposition 2(a) shows that a necessary condition for mA
t+1/mB

t+1 ∈ LEB is 

mA
t+1/mB

t+1 < [1-xB(σt+1)]/xB(σt+1).  Proposition 2(c) shows that a necessary 

condition for mA
t+1/mB

t+1 ∈ LEA is mA
t+1/mB

t+1 > xA(σt+1)/[1-xA(σt+1)]. 

When the necessary condition in (a) is combined with the necessary condition for LEB in 

(b), by Proposition 2 this suffices for mA
t+1/mB

t+1 ∈ LEB.  The result for LEA is the same. 

 We want to show that one of the inequalities in (b) holds iff σt+1 ∉ [σA
t+1, σB

t+1] as 

in Proposition 4(b).  The solutions for σA
t+1 and σB

t+1 exist and are unique due to the 

continuity of xA and xB; the monotonicity of these functions from (9b); and the limit 

properties of these functions from (9c) and (9d).  We next show σA
t+1 < σB

t+1.  Suppose 

σA
t+1 = σB

t+1.  From (9a) we have xA(σA
t+1) + xB(σB

t+1) > 1, which contradicts the definition 

of σA
t+1 and σB

t+1.  Suppose σA
t+1 > σB

t+1.  From (9b), xA is an increasing function, so this 

gives xA(σA
t+1) + xB(σB

t+1) > xA(σB
t+1) + xB(σB

t+1) > 1, which again contradicts the 

definition of σA
t+1 and σB

t+1.  Thus σA
t+1 < σB

t+1.   

 We now establish σA
t+1 < σt < σB

t+1.  Using the monotonicity of xA and xB in (9b), 

this holds iff xA(σA
t+1) < xA(σt) and 1 - xB(σt) < 1 - xB(σB

t+1).  From the definitions of σA
t+1 
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and σB
t+1, these inequalities hold iff 1 - xB(σt) < mA

t+1/Nt+1 < xA(σt).  We will show that the 

latter pair of inequalities is always satisfied. 

(i) Suppose there is a (trivial or non-trivial) war in period t.  This implies LA
t/LB

t = 

(σt)1/(1-α) where (LA
t, LB

t) is obtained from (5d).  From (13), mA
t+1/mB

t+1 = (σt)1/(1-α).  

We know LA
t/LB

t equalizes average products at the productivity ratio σt so the 

same is true for mA
t+1/mB

t+1.  Proposition 1 gives 1-xB(σt) < mA
t+1/Nt+1 < xA(σt). 

(ii) Suppose there is peace in period t.   From Proposition 3, this implies nA
t/nB

t ∈ LEP. 

First consider the case in which nA
t/nB

t > (σt)1/(1-α) so nA
t/nB

t exceeds the group size 

ratio that equalizes average products in period t.  By (12), mA
t+1/mB

t+1 = σt(nA
t/nB

t)α.  

This gives nA
t/nB

t > mA
t+1/mB

t+1 > (σt)1/(1-α).  Due to nA
t/nB

t ∈ LEP and the fact that 

(σt)1/(1-α) is in the interior of LEP in period t, mA
t+1/mB

t+1 is in the interior of the set 

LEP defined by σt in period t.  Proposition 2(b) then gives 1-xB(σt) < mA
t+1/Nt+1 < 

xA(σt).  A parallel argument yields the same result for the case in which nA
t/nB

t < 

(σt)1/(1-α).  The only other case is nA
t/nB

t = (σt)1/(1-α), which gives mA
t+1/mB

t+1 = (σt)1/(1-

α).  Again, mA
t+1/mB

t+1 is in the interior of the set LEP defined by σt and Proposition 

2(b) gives 1-xB(σt) < mA
t+1/Nt+1 < xA(σt).       

This concludes the proof that σA
t+1 < σt < σB

t+1.   

 When σt+1 < σA
t+1, the monotonicity of xA gives xA(σt+1) < xA(σA

t+1) ≡ mA
t+1/Nt+1 or 

xA(σt+1)/[1-xA(σt+1)] < mA
t+1/mB

t+1.  When σt+1 > σB
t+1, the monotonicity of xB gives 1-

xB(σt+1) > 1- xB(σB
t+1) ≡ mA

t+1/Nt+1 or [1-xB(σt+1)]/xB(σt+1) > mA
t+1/mB

t+1.  When σA
t+1 ≤ σt+1 ≤ 

σB
t+1, we have [1-xB(σt+1)]/xB(σt+1) ≤ mA

t+1/mB
t+1 ≤ xA(σt+1)/[1-xA(σt+1)].  Thus one of the 

inequalities in (b) of the proof holds iff σt+1 ∉ [σA
t+1, σB

t+1] as in Proposition 4(b). 
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Corollary. 

From Proposition 4, σA
t+1 < σt = σt+1 < σB

t+1 implies that there cannot be a non-trivial war 

in period t+1 regardless of whether there is war or peace in period t.  A trivial war can be 

ruled out using (i) and (ii) in the proof of Proposition 4 and substituting σt = σt+1 to show 

that mA
t+1/mB

t+1 ∈ LEP for period t+1.  Proposition 3(a) then yields peace in period t+1.    

 
 


